

20nm 64Gb e-NAND Product Family

Revision History

Revision No.	History	Draft Date	Remark
0.0	Initial Document	Aug. 24, 2012	
1.0	Official Release	Apr. 15, 2013	
1.1	Revised TYPO (200ms -> 1second, p18)	May. 06, 2013	
1.2	Revised CMD13 Description (p34, Table 17)	July. 08, 2013	
1.3	Updated PRV Value (81h -> 82h, p42, Table 28)	Sep. 10, 2013	

Table of Contents

1. Device Summary	5
2 Easturas	5
Z. Features	
3. Description	6
3.1 e-NAND Standard Specification	6
4. Device Physical Description	7
4.1 Package Connections	7
4.2 Form Factor	
4.3 PKG Mechanical Drawing	
4.3.1 12.0x16.0x1.0	
4.3.2 12.0x16.0x1.2	
5. e-NAND Features	
5.1 Bus Modes	
5.2 Partition	
5.3 Boot Operation	
5.4 Power Modes	
5.4.1 e-NAND Power-Up Guidelines	
5.4.2 e-NAND Power Cycling	
5.4.3 Leakage	
5.4.4 Power Supply	
5.4.5 Operation Current	
5.4.6 Low Power Mode	
5.5 Erase Write Protect Group Size	
5.6 Timings	
5.6.1 Time Out	
5.6.2 Bus Timing	
5.6.3 Bus Timing for DAT Signals During 2X Data Rate Operation	
5.7 Dus Signal Line Lead	30 مح
5.7.1 DUS SIGIII LIIIE LOUU	50 ۱د
5.7.2 Dus Siyiidi Leveis	

SK hynix

6. Commands	
6.1 Command Classes	
6.2 Detailed Command Description	
7. Device Registers	
7.1 Operation Conditions Register (OCR)	
7.2 Card Identification (CID) Register	
7.3 Card Specific Data Register(CSD)	
7.4 Extended CSD Register	
7.5 RCA (Relative Card Address)	
7.6 DSR (Driver Stage Register) Register	50
8. Connection Guide	
9. Temperature	

1. Device summary

eMMC Density	NAND	Root Part Number	Package	PKG size (mm)
16GB	20nm 64Gb	H26M52003EQR	FBGA169	12.0 x 16.0 x 1.0
32GB	20nm 64Gb	H26M64003DQR	FBGA169	12.0 x 16.0 x 1.0
64GB	20nm 64Gb	H26M78003BFR	FBGA169	12.0 x 16.0 x 1.2

2. Features

- Packaged NAND flash memory with MultiMediaCard interface
- High capacity memory access
- e-NAND system specification, compliant with V4.5
- Full backward compatibility with previous e-NAND system specification(MMC 4.41)
- Bus mode
- High-speed eMMC protocol.Three different data bus widths:
- 1 bit(default), 4 bits, 8 bits
- Data transfer rate: up to 200Mbyte/s (HS200)
- DDR mode supported (Up to 104MB/s, 52MHz, DDR Mode)
- Operating voltage range:
- $-V_{CCO}(Controller) = 1.7 1.95V / 2.7 3.6V$
- $-V_{CC}(NAND) = 2.7 3.6V$

- Security
- Password protection of data
- Secure Erase
- Secure Trim
- Secure bad block management
- Write Protection
- Sanitize
- Boot
- Normal / Alternative boot sequence method
- Power saving
- Enhanced power saving method by introducing sleep functionality
- Partition management with enhanced storage.
- Hardware reset supported
- Performance
 - Power off Notification
 - Context ID
 - Packed CMD
 - Discard
 - Context ID
- Cache
- Data Tag - HS200

- Error free memory access
- Internal error correction code
- Internal enhanced data management algorithm
- (Wear levelling, Bad block management, Garbage collection)
- Possibility for the host to make sudden power failure safe-update operations for data content

3. Description

e-NAND is an embedded flash memory storage solution. e-NAND was developed for universal low cost data storage and communication media. e-NAND is fully compatible with MMC bus and host.

e-NAND communications are made through an advanced 13-pin bus, and it can be either 1-bit, 4-bit, or 8-bit in width. e-NAND operates in high-speed mode at clock frequencies equal or higher than 20MHz as defined in the MMC JEDEC standard. The communication protocol is defined in this MMC JEDEC standard.

e-NAND is designed to cover a wide area of applications such as smart phones, cameras, organizers, PDA, digital recorders, MP3 players, pagers, electronic toys, etc. Features are mainly high speed performance, low power consumption, low cost and high density.

To meet the requirements of embedded high density storage media and mobile applications, e-NAND supports 3.3V for VCC, and 3.3V/1.8V for VCCQ. The address argument for e-NAND is consistent with the sector (512-byte sectors) instead of the byte. This means that e-NAND is not capable to support backward compatibility for devices with the condition of the density with lower than 2 Gigabytes. If e-NAND receives the byte addressing type, then e-NAND will change its state to inactive.

e-NAND has the built-in intelligent controller which manages interface protocols, data storage and retrieval, wear leveling, bad block management, garbage collection, and internal ECC. e-NAND protects the data contents from the host sudden power off failure by safe-update operations with reliable write features. The device supports a boot operation with enhance area and sleep/awake commands. In particular, the host power regulator for VCC can minimize the power consumption during the sleep state.

3.1 e-NAND standard specification

e-NAND device is fully compatible with the JEDEC Standard Specification No. JESD84-B45. This data sheet describes the key and specific features of e-NAND. Any additional interface related information, the device to a host system, and all other practical methods for card detection/access can be found in the proper section of the JEDEC Standard Specification.

4. Device Physical Description

4.1 Package Connections

The ball corresponding to VDDi must be de-coupled with an external capacitance.

Figure 1: FBGA169 Package Connections (top view through package)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
А				(NC)		(NC)			(NC)		(NC)				
в		(NC)		Õ		Õ			Õ		Õ		(NC)		
С		Ō		Õ		Õ			Õ		Õ		Ö		
D	(NC)())		Õ		Õ			Õ		()		()	(NC)	
Е	(***	$\langle \rangle$		Õ		ð			ð		Õ		Õ	Õ.	
F)())		$\langle \rangle$		Õ			Õ		Õ		$\overline{\bigcirc}$	Õ.	
G	(***	$\langle \rangle$		ð		Ä			ð		ð		ð	Õ.	
н	(NC)(NC)	DAT0	(DAT1)	DAT2	(RFU)	(RFU)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	
J	(NC) (DAT3)	DAT4	DAT5	(DAT6)	(DAT7)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	
к	(NC) (Vaal)	(NC)	VssQ	(RFU)	VccQ	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	NC)	(NC)	
L	(NC)(NC)	(NC)	(NC)	·····	*****	·····	·	·	··	·····	(NC)	(NC)	(NC)	
М	(NC) (NC)	(NC)	Index	(RFU)	(Vcc)	(Vss)	(RFU)	(RFU)	(RFU)		(NC)	(NC)	(NC)	
N	(NC) (NC)	(NC)		(Vcc)	******	Sec. 27	· · · · · · · ·	·••••	(RFU)		(NC)	(NC)	(NC)	
Р	(NC)(NC)	RFU		(Vss)					(RFU)		(NC)	NC)	(NC)	
R	(NC)(NC)	(NC)		(RFU)					(Vss)		(NC)	(NC)	(NC)	
т	NC)(NC)	(NC)		(RFU)					(Vcc)		(NC)	(NC)	(NC)	
U	(NC)(NC)	(NC)	:	RST_n	(RFU)	(RFU)	(Vss)	(Vcc)	(RFU)		(NC)	(NC)	(NC)	
V	(NC)(nc)	(NC)									(NC)	(NC)	(NC)	
w	(NC)(NC)	(NC)	(VccQ)	(CMD)	(CLK)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	
Y	(NC	(VSSQ)	(NC)	(VccQ)	VssQ	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	
AA	(NC)(NC)	VccQ	VssQ	VccQ	VssQ	(RFU)	(NC)	(NC)	(RFU)	(NC)	(NC)	(NC)	(NC)	
AB	Č	XÕ		Õ		Õ			Õ		Õ		Õ	Õ.	
AC	Ċ	XÕ		Õ		Ö			Ô		Õ		\bigcirc	Õ.	
AD	Ĉ	XÕ		Ō		Õ			Õ		Õ		Õ	Õ.	
AE	NC	$\langle \rangle$		Õ		Õ			\bigcirc		Õ		Õ	(NC)	
AF		Õ		Õ		Õ			()		Õ		\bigcirc		
AG		(NC)		Õ		Õ			Õ		Õ		(NC)		
АН				(NC)		(NC)			(NC)		NC				

Table 1: FBGA169 Pin Description

AA, AB and AC Devices	Symbol	Туре	Ball Function		
W6	CLK	Input	Clock: Each cycle directs a 1-bit transfer on the command and DAT lines.		
W5	CMD	Input	Command: A bidirectional channel used for device initialization and command transfers. Command has two operating modes: 1) Open-Drain for initialization. 2) Push-Pull for fast command transfer.		
НЗ	DAT0	I/O	Data I/O0: Bidirectional channel used for data transfer.		
H4	DAT1	I/O	Data I/O1: Bidirectional channel used for data transfer.		
H5	DAT2	I/O	Data I/O2: Bidirectional channel used for data transfer.		
J2	DAT3	I/O	Data I/O3: Bidirectional channel used for data transfer.		
J3	DAT4	I/O	Data I/O4: Bidirectional channel used for data transfer.		
]4	DAT5	I/O	Data I/O5: Bidirectional channel used for data transfer.		
J5	DAT6	I/O	Data I/O6: Bidirectional channel used for data transfer.		
J6	DAT7	I/O	Data I/O7: Bidirectional channel used for data transfer.		
U5	RST_n	Input	Reset signal pin		
M6,N5,T10,U9	Vcc	Supply	Vcc: Flash memory I/F and Flash memory power supply.		
K6,W4,Y4,AA3,AA5	VccQ	Supply	VccQ: Memory controller core and MMC interface I/O power supply.		
M7,P5,R10,U8	Vss	Supply	Vss: Flash memory I/F and Flash memory ground connection.		
K4,Y2,Y5,AA4,AA6	VssQ	Supply	VssQ: Memory controller core and MMC I/F ground connection		
К2	VDDi		VDDi: Connect 1.0~4.7uF capacitor from VDDi to ground.		
RFU			Reserved for future use		

4.2 Form Factor

The ball diameter, d, and the ball pitch, p, for the FBGA169 package are

- d = 0.30mm (solder ball diameter)
- p = 0.5mm (ball pitch)

Figure 2: e-NAND ball diameter and pitch

4.3 PKG mechanical drawing

4.3.1 12.0x16.0x1.0

Figure 3: 12.0x16.0x1.0 Top & Side View

4.3.2 12.0x16.0x1.2

Figure 5: 12.0x16.0x1.2 Top & Side View

5. e-NAND Features

5.1 Bus Modes

• Boot mode

e-NAND will be in boot mode after power cycle, reception of CMD0 with argument of 0xF0F0F0F0 or assertion of hardware reset signal.

• Identification Mode

e-NAND will be in identification mode when boot operation mode is finished or if host does not support a boot operation mode. e-NAND will be in this mode until the SET_RELATIVE_ADDR command (CMD3) is received.

• Interrupt Mode

e-NAND does not support Interrupt Mode.

• Data Transfer Mode

e-NAND will enter Data Transfer Mode once RCA is assigned to it. The host will enter Data Transfer Mode after identifying e-NAND on the bus.

• Inactive Mode

e-NAND will enter to inactive mode when e-NAND is operating invalid voltage range or access mode. Also e-NAND can be set to inactive mode by Go_INACTIVE_STATE command (CMD15). e-NAND can change from inactive mode to Pre-idle state by reset.

e-NAND state	Operation mode	Bus mode	
Inactive state	Inactive Mode		
Pre-Idle state	Deet Mede		
Pre-Boot state	BOOT MODE	Open-Drain	
Idle state			
Ready state	Identification Mode		
Identification state			
Stand-by state			
Sleep state			
Transfer state			
Bus-Test state	Data Transfer Mode		
Sending-data state		Push-Pull	
Receive-data state			
Programming state			
Disconnect state			
Boot state	Boot Mode		
Wait-IRQ State	Interrupt mode	Open-drain	

Table 2: Bus modes overview

5.2 Partition

Figure 7: Partition diagram

	Boot size	RPMB size
16 GB		
32 GB	4MB	4MB
64 GB		

5.3 Boot Operation

Figure 8: e-NAND state diagram (Boot Mode)

Figure 9: e-NAND state diagram (Alternative Boot Mode)

Timing Factor	
(1) Boot ACK Time	50 ms
(2) Boot Data Time	1000 ms
(3) Initialization Time	1000 ms

5.4 Power Modes

5.4.1 e-NAND power-up guidelines

e-NAND power-up must adhere to the following guidelines:

• When power-up is initiated, either VCC or VCCQ can be ramped up first, or both can be ramped up simultaneously.

• After power up, e-NAND enters the pre-idle state. The power up time of each supply voltage should be less than the specified tPRU (tPRUH, tPRUL or tPRUV) for the appropriate voltage range.

• If e-NAND does not support boot mode or its BOOT_PARTITION_ENABLE bit is cleared, e-NAND moves immediately to the idle state. While in the idle state, e-NAND ignores all bus transactions until receive CMD1. If e-NAND supports only standard v4.2 or earlier versions, the device enters the idle state immediately after power-up. e-NAND begins boot operation with the argument of 0xFFFFFFA. If a boot acknowledge is finished, e-NAND shall send acknowledge pattern "010" to the host within the specified time. After boot operation is terminated, e-NAND enters the idle state and shall be ready for CMD1 operation. If e-NAND receives CMD1 in the pre-boot state, it begins to respond to the command and moves to the card identification mode.

• When e-NAND initiated by alternative boot command(CMD0 with arg=0xFFFFFFA), all the data will be read from the boot partition and then e-NAND automatically goes to idle state. But hosts are still required to issue CMD0 with arg=0x0000000000 in order to complete a boot mode properly and move to the idle state. While in the idle state, e-NAND ignores all bus transactions until it receives CMD1.

• CMD1 is a special synchronization command which is used to negotiate the operation voltage range and to pull the device until it is out of its power-up sequence. In addition to the operation voltage profile of the device, the response to CMD1 contains a busy flag indicating that the device is still working on its power-up procedure and is not ready for identification. This bit informs the host that the device is not ready, and the host must wait until this bit is cleared. The device must complete its initialization within 1second of the first CMD1 issued with a valid OCR range.

• If e-NAND device was successfully partitioned during the previous power up session (bit 0 of EXT_CSD byte [155] PARTITION_SETTING_COMPLETE successfully set) then the initialization delay is (instead of 200ms) calculated from INI_TIMEOUT_PA (EXT_CSD byte [241]). This timeout applies only for the very first initialization after successful paritioning. For all the consecutive initialization 1sec time out will be applied.

• The bus master moves the device out of the idle state. Because the power-up time and the supply ramp-up time depend on the application parameters such as the bus length and the power supply unit, the host must ensure that power is built up to the operating level (the same level that will be specified in CMD1) before CMD1 is transmitted.

• After power-up, the host starts the clock and sends the initializing sequence on the CMD line. The sequence length can be as long as: 1ms, 74 clocks, the supply ramp-up time, or the boot operation period. An additional 10 clocks (beyond the 64 clocks of the power-up sequence) are provided to eliminate power-up synchronization problems.

• Every bus master must implement CMD1.

5.4.2 e-NAND Power Cycling

The master can execute any sequence of VCC and VCCQ power-up/power-down. However, the master must not issue any commands until VCC and VCCQ are stable with each operating voltage range. After the slave enters sleep mode, the master can power-down VCC to reduce power consumption. It is necessary for the slave to be ramped up to VCC before the host issues CMD5 (SLEEP_AWAKE) to wake the slave unit.

Figure 10: e-NAND power cycle

If VCC or VCCQ are below 0.5 V for longer than 1 ms, the slave shall always return to the pre-idle state, and perform the appropriate boot behavior. The slave will behaves as in a standard power up condition once the voltages have returned to their functional ranges. An exception to the this behavior is if the device is in sleep state, in which the voltage on VCC is not monitored.

5.4.3 Leakage

Table 3: General operation conditions

Parameter	Symbol	Min	Max.	Unit	Remar k	
Peak voltage on lines	Card		-0.5	VDD+0.5	V	
	BGA		-0.5	VccQ+0.5	V	
All inputs						
Input leakage current (before initialization sequenceand/or the internalpull up resistors connected)			-100	100	μΑ	
Input leakage current (after initialization sequence and the inter- nal pull up resistors disconnected)			-2	2	μΑ	
All outputs						
Output leakage current (before initialization sequence)			-100	100	μΑ	
Output leakage current (after initialization sequence)			-2	2	μΑ	

• NOTE 1. Initialization sequence is defined in JEDEC Section 12.3 on page 161

5.4.4 Power Supply

In e-NAND, VCC is used for the NAND core voltage and NAND interface; VCCQ is for the controller core and e-NAND interface voltage shown in Figure 11. A CREG capacitor must be connected to the VDDi terminal to stabilize regulator output on the system.

Figure 11: e-NAND internal power diagram

e-NAND supports one or more combinations of VCC and VCCQ as shown in Table 4. The available voltage configuration is shown in Table 5.

Parameter	Symbol	Min	Max.	Unit	Remark
Supply voltage (NAND)	VCC	2.7	3.6	V	
Supply Voltage (IVIIID)	Vee	1.7	1.95	V	Not support
Supply voltage (I/O)	VCCQ	2.7	3.6	V	
Supply voltage (1/0)		1.7	1.95	V	
Supply power-up for 3.3V	tPRUH		35	ms	
Supply power-up for 3.3V	tPRUL		25	ms	
Supply power-up for 3.3V	tPRUV		20	ms	

Table 4: e-NAND power supply voltage

• NAND I/O Voltage: 1.8V for HS NAND

Table 5: e-NAND voltage combinations

		VC	CQ
		1.7V ~ 1.95V	2.7V ~ 3.6V
VCC	2.7V–3.6V	Valid	Valid
Vee	1.7V–1.95V	NOT VALID	NOT VALID

5.4.5 Operation Current

Table 6: e-NAND operation current

Density	Тур	ical	Max.		
	VCC VCCQ		VCC	VCCQ	
16GB	50mA	50mA	100mA	100mA	
32GB	100mA	50mA	200mA	100mA	
64GB	100mA	50mA	200mA	100mA	

Condition1: VCCQ 1.8V, VCC 3.3V, Clock@52Mhz, 8bit bus width , Room temp Condition2: Current measurements are average over 100ms Condition3: Max. is RMS Max. not peak current.

5.4.6 Low Power Mode

• Standby Power Mode

Density	Current
16GB	
32GB	200uA
64GB	300uA

Conditions: VCCQ 1.8V, VCC 3.3V, Clock@52Mhz, 8bit bus width , Room temp.

• Sleep Power Mode

Density	Current
16GB	
32GB	100uA
64GB	

Conditions: VCCQ 1.8V, VCC 3.3V, Clock@52Mhz, 8bit bus width , Room temp.

5.5 Erase Write Protect Group Size

	Erase gro	Write protect group size		
	ERASE_GROUP_DEF=0	ERASE_GROUP_DEF=1	write protect group size	
16 GB	512KB	512KB	8MB	
32 GB	512KB	512KB	8MB	
64 GB	512KB	512KB	16MB	

5.6 Timings

5.6.1 Time Out

Timing parameter	Value
Read timeout	Max 150 ms
Write timeout	Max 500 ms
Erase timeout	Max 600 ms
Force erase timeout	Max 3 min
Trim timeout	300ms (16GB) 600ms (32/64GB)
Partition switching Time out (Measured time after initialization)	Max 20ms

5.6.2 Bus Timing

Data must always be sampled on the rising edge of the clock.

Parameter	Symbol	Min	Max	Unit	Remark			
Clock CLK ⁽¹⁾								
Clock frequency Data Transfer Mode (PP) ⁽²⁾	f _{PP}	0	₅₂ (3)	MHz	C _L ≤30 pF Tolerance: +100KHz			
Clock frequency Identification Mode (OD)	f _{OD}	0	400	kHz	Tolerance: +20KHz			
Clock high time	t _{WH}	6.5		ns	CL ≤ 30 pF			
Clock low time	t _{WL}	6.5		ns	C _L ≤ 30 pF			
Clock rise time ⁽⁴⁾	t _{TLH}		3	ns	C _L ≤ 30 pF			
Clock fall time	t _{THL}		3	ns	C _L ≤ 30 pF			
Inputs CMD, DAT (referenced to CLK)	L	ł	•	L				
Input set-up time	t _{ISU}	3		ns	C _L ≤ 30 pF			
Input hold time	t _{IH}	3		ns	C _L ≤ 30 pF			
Outputs CMD, DAT (referenced to CLK)			•					
Output delay time during data transfer	t _{ODLY}		13.7	ns	C _L ≤ 30 pF			
Output hold time	t _{ОН}	2.5		ns	C _L ≤ 30 pF			
Signal rise time ⁽⁵⁾	t _{rise}		3	ns	C _L ≤ 30 pF			
Signal fall time	t _{fall}		3	ns	C _L ≤ 30 pF			

Table 7: High-speed e-NAND interface timing

• <u>NOTE 1</u>. CLK timing is measured at 50% of VDD.

- NOTE 2. e-NAND shall support the full frequency range from 0-26Mhz, or 0-52MHz
- NOTE 3. Card can operate as high-speed card interface timing at 26 MHz clock frequency.
- NOTE 4. CLK rising and falling times are measured by min (VIH) and max (VIL).
- <u>NOTE 5</u>. Inputs CMD, DAT rise and fall times are measured by min (VIH) and max (VIL), and outputs CMD, DAT rise and fall times are measured by min (VOH) and max (VOL).

Parameter	Symbol	Min	Max	Unit	Remark ⁽¹⁾				
Clock CLK ⁽²⁾									
Clock frequency Data Transfer Mode (PP) ⁽³⁾	f _{PP}	0	26	MHz	CL ≤ 30 pF				
Clock frequency Identification Mode (OD)	f _{OD}	0	400	kHz					
Clock high time	t _{WH}	10		ns	CL ≤ 30 pF				
Clock low time	t _{WL}	10		ns	CL ≤ 30 pF				
Clock rise time ⁽⁴⁾	t _{TLH}		10	ns	CL ≤ 30 pF				
Clock fall time	t _{THL}		10	ns	CL ≤ 30 pF				
Inputs CMD, DAT (referenced to CLK)									
Input set-up time	t _{ISU}	3		ns	CL ≤ 30 pF				
Input hold time	t _{IH}	3		ns	CL ≤ 30 pF				
Outputs CMD, DAT (referenced to CLK)									
Output set-up time	t _{OSU}	11.7		ns	CL ≤ 30 pF				
Output hold time	t _{OH}	8.3		ns	CL ≤ 30 pF				

Table 8: Backward-compatible e-NAND interface timing

- <u>NOTE 1</u>. e-NAND must always start with the backward-compatible interface timing. The timing mode can be switched to high-speed timing by the host sending the SWITCH command (CMD6) with the argument for high speed interface select.
- NOTE 2. CLK timing is measured at 50% of VDD.
- <u>NOTE 3</u>. For compatibility with cards that support the v4.2 standard or earlier, host should not use > 20 MHz before switching to high-speed interface timing.
- <u>NOTE 4</u>. CLK rising and falling times are measured by min (VIH) and max (VIL).
- <u>NOTE 5</u>. tOSU and tOH are defined as values from clock rising edge. However, there may be cards or devices which utilize clock falling edge to output data in backward compatibility mode.

Therefore, it is recommended for hosts to either to set tWL value as long as possible within the range which will not go over tCK-tOH(min) in the system or to use slow clock frequency, so that host could have data set up margin for those devices.

In this case, each device which utilizes clock falling edge might show the correlation either between tWL and tOSU or between tCK and tOSU for the device in its own datasheet as a note or its' application notes.

5.6.3 Bus Timing for DAT Signals During 2X Data Rate Operation

These timings apply to the DAT[7:0] signals only when the device is configured for dual data mode operation. In dual data mode, the DAT signals operate synchronously of both the rising and the falling edges of CLK. The CMD signal still operates synchronously of the rising edge of CLK and therefore complies with the bus timing specified in eMMC JEDEC spec. section 11.5, therefore there is no timing change for the CMD signal.

Figure 13: Timing diagram: data input/output in dual data rate mode

Table 9: Dual data rate interface timings

Parameter	Symbol	Min.	Max.	Unit	Remark				
Input CLK ⁽¹⁾									
Clock duty cycle		45	55	%	Includes jitter, phase noise				
Clock rise time	t _{TLH}		3	ns	CL≤30 pf				
Clock fail time	t _{THL}		3	ns	CL≤30 pf				
Input CMD (referenced to CLK-SDR mode	e)		•	•					
Input set-up time	tISUddr			ns	CL≤20 pf				
Input hold time	tIHDDR			ns	CL≤20 pf				
Output CMD (referenced to CLK-SDR mo	de)		•	•					
Output delay time during data transfer	tODLY		13.7	ns	CL≤20 pf				
Output hold time	tOH	2.5		ns	CL≤20 pf				
Signal rise time	tRISE		3	ns	CL≤20 pf				
Signal fall time	tFALL		3	ns	CL≤20 pf				
Input DAT (referenced to CLK-DDR mode	e)								
Input set-up time	tISUddr	2.5		ns	CL≤20 pf				
Input hold time	tIHddr	2.5		ns	CL≤20 pf				
Outputs DAT (referenced to CLK-DDR mo	Outputs DAT (referenced to CLK-DDR mode)								
Output delay time during data transfer	tODLYddr	1.5	7	ns	CL≤20 pf				
Signal rise time(DAT0-7) ⁽²⁾	tRISE		2	ns	CL≤20 pf				
Signal fall time (DAT0-7)	tFALL		2	ns	CL≤20 pf				

• <u>NOTE 1</u>. CLK timing is measured at 50% of VDD.

• <u>NOTE 2</u>. Inputs CMD, DAT rise and fall times are measured by min (VIH) and max (VIL), and outputs CMD, DAT rise and fall times are measured by min (VOH) and max (VOL)

5.6.4 Bus Timing Specification in HS 200 Mode

Host CLK Timing in HS200 mode shall conform to the timing specified in Figure 14 and

Table 9. CLK input shall satisfy the clock timing over all possible operation and environment conditions.CLK input parameters should be measured while CMD and DAT lines are stable high or low, as close as possible to the Device.

The maximum frequency of HS200 is 200MHz. Hosts can use any frequency up to the maximum that HS200 mode allows.

Symbol	Min.	Max.	Unit	Remark
t _{PERIOD}	5	-	ns	200MHz(Max.), between rising edges
t _{TLH} , t _{THL}	-	0.2 * t _{PERIOD}	ns	t_{TLH} , $t_{THL} < 1ns(max)$ at 200MHz, CBGA=12pF, The absolute maximum value of tTLH, tTHL is 10ns regardless of clock frequency.
Duty Cycle	30	70	%	

N OTE 1 V_{IH} denote $V_{IH}(min.)$ and V_{IL} denotes $V_{IL}(max.)$.

N OTE 2 VT=0.975V - Clock Threshold, indicates clock reference point for timing measurements.

Figure 14. HS200 Clock signal timing

5.7 Bus Signal

5.7.1 Bus Signal Line Load

The total capacitance CL of each line of e-NAND bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself, and the capacitance C_{e-NAND} of the e-NAND connected to this line, and requiring the sum of the host and bus capacitances not to exceed 20 pF (see Table 11).

Parameter	Symbol	Min	Тур	Мах	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7		100	Kohm	to prevent bus floating
Pull-up resistance for DAT0-7	R _{DAT}	10		100	Kohm	to prevent bus floating
Bus signal line capacitance	CL			30	pF	Single card
Single e-NAND capacitance	C _{BGA}		7	12	pF	For BGA
Maximum signal line inductance				16	nH	f _{PP} ≤ 52 MHz
VDDi capacitor value	C _{REG} ⁽²⁾	0.1			uF	to stablize regulator output to controller core logics
VccQ decoupling capacitor	CHI	1			uF	(3), (4), (5)

Table 1	11 :	e-NAND	Capacitance
---------	------	--------	-------------

Internal Pull-up: 70Kohm

- (1) Recommended maximum pull-up is 30 Kohm for 1.2 V and 50Kohm for 1.8V interface supply voltages. A 3V part, may use the whole range up to 100Kohms.
- (2) Recommended value for CREG, CREG2 and CREG3 might be different between &MMC device vendors. Please confirm the maximum value and the accuracy of the capacitance with &MMC vendor because the electrical characteristics of the regulator inside &MMC is affected by the fluctuation of the capacitance.
- (3) CH1 is VccQ-VssQ decoupling capacitor required for HS200 *e*•MMC device.
- (4) CH1 should be placed adjacent to VccQ-VssQ balls (#K6 and #K4 accordingly, next to DAT[7..0] balls), It should be located as close as possible to the balls defined in order to minimize connection parasitics.
- (5) e-MMC device vendor may have more specific requirements for CH1 placement.

Please confirm such requirements with specific e-MMC device vendor.

5.7.2 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

Figure15: e-NAND bus signal level

• Open-Drain mode bus signal level

Table 12	: Open-l	Drain s	signal	level
----------	----------	---------	--------	-------

Parameter	Symbol	Min.	Max.	Unit	Conditions
Output HIGH voltage	V _{OH}	V _{DD} - 0.2		V	IOH = -100μA
Output LOW voltage	V _{OL}		0.3	V	IOL = 2mA

• Push-Pull mode bus signal level

Table 13: Push-Pull signal level 2.7V-3.6V VCCQ range

Parameter	Symbol	Min.	Max.	Unit	Conditions
Output HIGH voltage	V _{OH}	0.75 * V _{DD}		V	IOH = -100µA @ VDD min
Output LOW voltage	V _{OL}		0.125 * V _{DD}	V	IOL = -100µA @ VDD min
Input HIGH voltage	V_{IH}	0.625 * V _{DD}	V _{DD} + 0.3	V	
Input LOW voltage	V _{IL}	V _{SS} - 0.3	0.25 * V _{DD}	V	

Table 14: Push-pull signal level 1.65V-1.95V VCCQ range

Parameter	Symbol	Min.	Max.	Unit	Conditions
Output HIGH voltage	V _{OH}	VDD - 0.45V		V	IOH = -2mA
Output LOW voltage	V _{OL}		0.45V	V	IOL = -2mA
Input HIGH voltage	V _{IH}	0.65 * V _{DD}	V _{DD} + 0.3	V	
Input LOW voltage	V _{IL}	V _{SS} - 0.3	0.35 * V _{DD}	V	

6. Commands

6.1 Command Classes

The command set of e-NAND is divided into several classes. Each class supports a subset of e-NAND functions. The supported e-NAND command Classes are coded as a parameter in the eMMC specific data (CSD) register, providing the host with information on how to access the e-NAND.

e-NAND	Class											Sup	port	com	ıman	ds									
command class	description	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	23	24	25
Class 0	basic	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+				+				
Class 1	obsolete																								
Class 2	block read																	+	+	+			+		
Class 3	obsolete																								
Class 4	block write																	+					+	+	+
Class 5	erase																								
Class 6	write protection																								
Class 7	lock eMMC																	+							
Class 8	Application specific																								
Class 9	I/O mode																								
Class 10	Security mode																								
Class 11	reserved																								

Table 15: Supported eMMC command classes

e-NAND	Class							S	uppo	rt co	omma	ands							
command class	description	26	27	28	29	30	31	35	36	38	39	40	42	42	49	53	54	55	56
Class 0	basic																		
Class 1	stream read																		
Class 2	block read																		
Class 3	stream write																		
Class 4	block write	+	+											+	+				
Class 5	erase							+	+	+									
Class 6	write protection			+	+	+	+												
Class 7	lock eMMC												+						
Class 8	Application specific																	+	
Class 9	I/O mode										+	+							
Class10	Security Protocols															+	+		
Class11	reserved																		

6.2 Detailed Command Description The following tables define in detail all e-NAND commands.

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description
CMD0	bc	[31:0] 00000000	-	GO_IDLE_STATE	Resets e-NAND to idle state
	bc	[31:0] F0F0F0F0	-	GO_PRE_IDLE_STATE	Resets e-NAND to pre-idle state
	-	[31:0] FFFFFFA	-	BOOT_INITIATION	Inititiate alternative boot operation
CMD1	bcr	[31:0] OCR with-out	R3	SEND_OP_COND	Asks e-NAND, in idle state, to send its Operating Condi-
		busy			tions Register contents in the response on the CMD line.
CMD2	bcr	[31:0] stuff bits	R2	ALL_SEND_CID	Asks e-NAND to send its CID number on the CMD line
CMD3	ac	[31:16] RCA	R1	SET_RELATIVE_ADDR	Assigns relative address to e-NAND
		[15:0] stuff bits			
CMD4	bc	[31:16] DSR	-	SET_DSR	Programs the DSR of e-NAND
		[15:0] stuff bits			
CMD5	ac	[31:16] RCA	R1b	SLEEP_AWAKE	Toggles the card between Sleep state and Standby
		[15] Sleep/Awake			state.
		[14:0] stuff bits			
CMD6	ac	[31:26] Set to 0	R1b	SWITCH	Switches the mode of operation of e-NAND the
		[25:24] Access			EXT_CSD registers.
		[23:16] Index			
		[15:8] Value			
		[7:3] Set to 0			
		[2:0] Cmd Set			
CMD7	ac	[31:16] RCA	R1/	SELECT/DESELECT_CARD	Command toggles e-NAND between the stand-by and
		[15:0] stuff bits	R1b ⁽¹⁾		transfer states or between the programming and dis-
					connect states. In both cases e-NAND is selected by its
					own relative address and gets deselected by any other
					address: address 0 deselects e-NAND.
CMD8	adtc	[31:0] stuff bits	R1	SEND_EXT_CSD	e-NAND sends its EXT_CSD register as a block of data.
CMD9	ac	[31:16] RCA	R2	SEND_CSD	e-NAND sends its card-specific data (CSD) on the CMD
		[15:0] stuff bits			line.
CMD10	ac	[31:16] RCA	R2	SEND_CID	e-NAND sends its card identification (CID) on CMD the
		[15:0] stuff bits			line.
CMD11				obsolete	The response to CMD11 will be undefined.
CMD12	ac	[31:16]RCA3	R1/	STOP_TRANSMISSION	Forces e-NAND to stop transmission. If HPI flag is set
		[15:1]stuff bits	R1b4		the device shall interrupt itsinternal operations in a well
	1	[0]HPI	1		defined timina.

Table 16: Basic command (class 0 and class 1)

Table 17: Basic commands and read-stream command (class 0 and class 1) (continued)

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description
CMD13	ас	[31:16] RCA [15:1] stuff bits [0] HPI	R1	SEND_STATUS	e-NAND sends its status register. e-NAND does not support HPI by CMD13.
CMD14	adtc	[31:0] stuff bits	R1	BUSTEST_R	A host reads the reversed bus testing data pattern from e-NAND.
CMD15	ас	[31:16] RCA [15:0] stuff bits	-	GO_INACTIVE_STATE	Sets e-NAND to inactive state
CMD19	adtc	[31:0] stuff bits	R1	BUSTEST_W	A host sends the bus test data pattern to e-NAND.

• NOTE 1. R1 while selecting from Stand-By State to Transfer State; R1b while selecting from Disconnected State to

NOTE 2. RCA in CMD12 is used only if HPI bit is set. The argument does not imply any RCA check on the device side.

• NOTE 3. R1 for read cases and R1b for write cases.

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description
CMD16	ас	[31:0] block length	R1	SET_BLOCKLEN	Sets the block length (in bytes) for all following block commands (read and write). Default block length is specified in the CSD.
CMD17	adtc	[31:0] data address ⁽¹⁾	R1	READ_SINGLE_BLOCK	Reads a block of the size selected by the SET_BLOCKLEN command.(2)
CMD18	adtc	[31:0] data address ⁽¹⁾	R1	READ_MULTIPLE_ BLOCK	Continuously transfers data blocks from e-NAND to host until interrupted by a stop command, or the requested number of data blocks is transmitted
CMD21	adtc	[31:0] stuff bits	R1	SEND_TUNING_ BLOCK	128 clocks of tuning pattern(64byte in 4bit mode or 128byte in 8 bit mode)is sent for HS200 optimal sampling point detection

Table 18: Block-oriented read commands (class 2)

NOTE 1. Data address for media =<2GB is a 32bit byte address and data address for media > 2GB is a 32bit sector (512B) address.
NOTE 2. The transferred data must not cross a physical block boundary, unless READ_BLK_MISALIGN is set in the CSD register.

Table 19: Stream write commands (class 3)

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command Description
CMD20				Obsolete	The response to CMD20 will be undefined.
CMD22	reserved				

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command Description
CMD23	ac	[31] Reliable Write Request	R1	SET_BLOCK_COUNT	non-packed command version
(default)		[30] '0' non-packed [29] tag request [28:25] context ID [24]: forced			Defines the number of blocks (read/write) and the reliable writer parameter(write)for a block read or write command (See section 6.69 and Section 6.6.10)
		[23:16] set to 0 [15:0] number of blocks			Many contain a tag request or a context ID. Tag and Context cannot be used together in the same command, if one is used the other must be set to zero.
					The context ID is a identifier(0 to 15) that associates the read/write command with the specific context.
					When bit 24 is set to 1, forced programming enaled, data shall be forcefully programmed to non-volatile storage instead of volatile cache while cache is turned ON.
CMD23	ас	[31]set to 0	R1	SET_BLOCK_COUNT	packed command version
(раскед)		[30] '1' packed [29:16] set to 0 [15:0] number of blocks			Defines the number of blocks (read/wirte) for the following packed write command or for the header of the following packed command.
					For packed write commands, the number of blocks should include the total number of blocks all packed commands plus one for the header block.
					For packed read commands, the number of blocks should equal one as only the header is sent inside the following CMD25. After that, a separate normal read command is sent to get the packed data.
CMD24	adtc	[31:0] data address(1)	R1	WRITE_BLOCK	Writes a block of the size selected by the SET_BLOCKLEN command(2).
CMD25	adtc	[31:0] data address(1)	R1	WRITE_MULTIPLE_BLOCK	Continuously writes blocks of data until a STOP_TRANSMISSION follows or the requested number of block received. If sent as a packed command (either packed write, or the header of packed read) the argument shall contain the first read/write date address in the pack(address of first individual command inside the pack).
CMD26	adtc	[31:0] stuff bits	R1	PROGRAM_CID	Programming of the card identification regis- ter.This command shall be issued only once. e- NAND contains hardware to prevent this operation after the first programming. Normally this com- mand is reserved for the manufacturer.
CMD27	adtc	[31:0] stuff bits	R1	PROGRAM_CSD	Programming of the programmable bits of the CSD.
CMD49	adtc	[31:0] stuff bits	R1	SET_TIME	Set the real time clock according to the RTC information in the 512B data block
• <u>NOTE 1</u> .	Data addre	ess for media = < 2GB is a 32bit t	oyte addres	ss and data address for media > 2GB	is a 32bit sector (512B) address.
● <u>NUTE 2</u> .	i ne transfe	erreu data must not cross a phys	sical diock	boundary unless WRITE_BLK_MISALI	GIN IS SET IN THE CSD.

Table 20: Block-oriented	l write	commands	(class 4)
--------------------------	---------	----------	-----------

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command Description
CMD28	ac	[31:0] data address(1)	R1b	SET_BLOCK_COUNT	IF Class_6_CTRL = 0x00: If e-NAND has write protection features, this com- mand sets the write protection bit of the addressed group. The properties of write protec- tion are coded in the card specific data (WP_GRP_SIZE or HC_WP_GRP_SIZE). IF Class_6_CTRL = 0x01: This command releases the specifed addressed group.
CMD29	ac	[31:0] data address(1)	R1b	CLR_WRITE_PROT	IF Class_6_CTRL = 0x00: If e-NAND provides write protection fea-tures, this command clears the write protec-tion bit of the addressed group. IF Class_6_CTRL = 0x01: This command releases the specified addressed group.
CMD30	adtc	[31:0] write protect data address	R1	SEND_WRITE_PROT	IF Class_6_CTRL = 0x00: If e-NAND provides write protection fea-tures, this command asks e-NAND to send the status of the write protection bits.(2) IF Class_6_CTRL = 0x01: This command asks the device to send the status of released groups. A bit '0' means the specific group is valid and assessible, a bit '1' means the specific group was released and it cannot be used.(3)
CMD31	adtc	[31:0] write protect data address	R1	SEND_WRITE_PROT_TYPE	IF Class_6_CTRL = 0x00: This command sends the type of write protection that is set for the different write protection group.(4) IF Class_6_CTRL = 0x01: This command returns a fixed pattern of 64bit zeros in its payload.

Fable 21: Block-oriented write prote	ection commands (class 6)
---	---------------------------

• NOTE 1. Data address for media =<2GB is a 32bit byte address and data address for media > 2GB is a 32bit sector (512B) address.

• <u>NOTE 2</u>. 32 write protection bits (representing 32 write protect groups starting at the specified address) followed by 16 CRC bits are transferred in a payload format via the data lines. The last (least significant) bit of the protection bits corresponds to the first addressed group. If the addresses of the last groups are outside the valid range, then the corresponding write protection bits shall be set to zero.

- NOTE 3. 32 released status bits (representing 32 write protect groups starting at the specified address) followed by 16 CRC bits are transferred in a payload format via the data lines. The last (least significant) bit of the released bits corresponds to the first addressed group. If the addresses of the last groups are outside the valid range, then the corresponding released bits shall be set to zero.
- NOTE 4. 64 write protection bits (representing 32 write protect groups starting at the specified address) followed by 16 CRC bits are transferred in a payload format via the data lines. Each set of two protection bits shows the type of protection set for each of the write protection groups. The definition of the different bit settings are shown below. The last (least significant) two bits of the protection bits correspond to the first addressed group. If the addresses of the last groups are outside the valid range, then the corresponding write protection bits shall be set to zero. "00" Write protection group not protected
 - "01" Write protection group is protected bytemporary write protection
 - "10" Write protection group is protected by power-on write protection
 - "11" Write protection group is protected by permanent write protection

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description			
CMD32 CMD34	Reserved. These command indexes cannot be used in order to maintain backwards compatibility with older ver-sions of eMMCs							
CMD35	ас	[31:0] data address(1),(2)	R1	ERASE_GROUP_START	Sets the address of the first erase group within a range to be selected for erase			
CMD36	ас	[31:0] data address(1),(2)	R1	ERASE_GROUP_END	Sets the address of the last erase group within a continuous range to be selected for erase			
CMD37	Reserve This co eMMCs	ed. mmand index cannot be	e used in	order to maintain backwa	ards compatibility with older versions of			
CMD38	ac	[31] Secure request [30:16] set to 0 [15] Force garbage collect request(4) [14:2] set to 0 [1]Discard Enable [0]Identify Write block for Erase (or TRIM Enable)	R1b	ERASE	Erases all previously selected write blocks according to argument bits.(3) When all argument bits are zero CMD38 wil perform an erase on erase group(s). When Bit 0= 1 and Bit 1=0 then CMD38 will perform a TRIM on the sec- tor(s) When Bit 0= 1 and Bit 1=1 then CMD38 will perform a Discard on the sector(s) To maintain backward compatibility the device must not report an error if bits 31 and 15 are set. The device behavior when these are set is undefined. All other argument setting should trig- ger an ERROR.			

Table 22: Erase commands (class 5)

<u>NOTE 1</u>. Data address for e-NAND is a 32bit sector (512B) address.
 <u>NOTE 2</u>. e-NAND will ignore all LSB's below the Erase Group size, effectively rounding the address down to the Erase

NOTE 2. Ended win ignore an esb s below the Ended of our size, encervery reacting the data as down to the Ended of our size, encervery reacting the data as down to the Ended of the State of the State of the Ended of the State of the State

Table 23: Lock eMMC commands (class 7)

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description
CMD42	adtc	[31:16] stuff bits	R1	LOCK_UNLOCK	Used to set/reset the password or lock/unlock the card. The size of the data block is set by the SET_BLOCK_LEN command.
CMD43 CMD48	reserved				

Table 24: Application-specific commands (class 8)

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description		
CMD55	ас	[31:16] RCA [15:0] stuff bits	R1	APP_CMD	Indicates to the Device that the next command is an application specific command rather than a standard command.		
CMD56	adtc	[31:1] stuff bits. [0]: RD/WR ⁽¹⁾	R1	GEN_CMD	Used either to transfer a data block to the Device or to get a data block from the Device for general pur- pose / application specific commands. The size of the data block shall be set by the SET_BLOCK_LEN com- mand.		
CMD57	reserved			·			
 CMD59							
CMD60 CMD63	reserved	for manufacturer					

• NOTE 1. RD/WR: "1" the host gets a block of data from e-NAND. "0" the host sends block of data to e-NAND.

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description
CMD39	ac	[31:16] RCA [15:15] register write flag [14:8] register address [7:0] register dat	R4	FAST_IO	Used to write and read 8 bit (register) data fields. The command addresses a Device and a register and provides the data for sriting if the write flag is set. The R4 response contains data read from the addressed register if the write flag is cleared to 0. This command accesses application dependent registers which are not defined in th eMMC stan- dard.
CMD40	bcr	[31:0] stuff bits	R5	GO_IRQ_STATE	Sets the system into interrupt mode
CMD41	reserved				

Table 25: I/O mode commands (class 9)

Table 26: Security Protocols (class 10)

CMD INDEX	Туре	Argument	Resp	Abbreviation	Command description
CMD50-52	Reserved				
CMD53	adtc	[16:31] Security Protocol Spe- cific [15:8] Security Protocol [7:0]reserved	R1	PROTOCOL_RD	Continuously transfers data blocks from device to host. Number of data blocks shall be defined by a preceding CMD23. Data Transfer may be interrupted by a STOP_TRANSMISSION command, This command is not supported if sent as a packed command. Block size is always 512byte.
CMD54	adtc	[16:31] Security Protocol Spe- cific [15:8]Security Protocol [7:0]reserved	R1	PROTOCOL_WR	Continuously transfer data blocks from host to device. Number of data block shall be defined by a preceding CMD23. Data Transfer may be interrupted by a STOP_TRANSMISSION command. This command is not supported if sent as a packed command. Block size is always 512bytes.

7. Device Registers

There are six different registers within the device interface:

- •Operation Conditions Register (OCR)
- •Card Identification Register (CID)
- •Card Specific Data Register (CSD)
- •Relative Card Address Register (RCA)
- •DSR (Driver Stage Register)
- •Extended Card Specific Data Register (EXT_CSD).

These registers are used for the serial data communication and can be accessed only using the corresponding commands . (refer to section 8 of the JEDEC Standard Specification No. JESD84-A45)

e-NAND has a status register to provide information about the device current state and completion codes for the last host command.

7.1 Operation Conditions Register (OCR)

The 32-bit operation conditions register (OCR) stores the VDD voltage profile of e-NAND and the access mode indication. In addition, this register includes a status information bit. This status bit is set if e-NAND power up procedure has been finished. The OCR register shall be implemented by e-NAND.

OCR bit	Description	High Voltage Multimedia Card	Dual voltage MultiMedia Card and eMMC				
[6:0]	Reserved	000 0000b	00 00000b				
[7]	1.70 - 1.95V	0b	1b				
[14:8]	2.0 - 2.6	000 0000b	000 000b				
[23:15]	2.7 - 3.6 (High VCCQ range)	1 1111 1111b	1 1111 1111b				
[28:24]	Reserved	0 0000b	000 000b				
[30:29]	Access mode	00b (byte mode) 10b (sector mode)	00b (byte mode) 10b (sector mode)				
[31]	(card power up status bit ((busy) ⁽¹⁾						

Table 27: OCR register definition

• NOTE 1. This bit is set to LOW if the card has not finished the power up routine

7.2 Card Identification (CID) Register

The Card IDentification (CID) register is 128 bits wide. It contains e-NAND identification information used during e-NAND identification phase (e-NAND protocol). Every individual flash or I/O e-NAND shall have a unique identification number. Table 28 lists these identifiers. The structure of the CID register is defined in the following sections., refer to section 8.2 of the JEDEC Standard Specification No. JESD84-A441.

Name	Field	Width	CID slice	CID value	Remark
Manufacturer ID	MID	8	[127:120]	90h	
Reserved		6	[119:114]		
Card/BGA	CBX	2	[113:112]	01h	BGA
OEM/application ID	OID	8	[111:104]	4ah	
Product name	PNM	48	[103:56]	16GB: 0x484147326504 32GB: 0x484247346504 64GB: 0x484347386504	
Product revision	PRV	8	[55:48]	16GB : 03h 32GB : 82h 64GB : 82h	
Product serial number	PSN	32	[47:16]	201111h	Not Fixed
Manufacturing date	MDT	8	[15:8]	28h	Not Fixed
CRC7 checksum	CRC	7	[7:1]	1bh	Not Fixed
Not used, always '1'	Reserved	1	[0:0]	1	

 Table 28 : Card identification (CID) fields

7.3 Card Specific Data Register (CSD)

The Card Specific Data (CSD) register provides information on how to access e-NAND contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E, see below) can be changed by CMD27. The type of the CSD Registry entries in the Table 29 below is coded as follows:

- *R*: Read only. W: One time programmable and not readable. R/W: One time programmable and readable.
- *W/E:* Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and not readable.
- *R***/***W***/***E*: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and readable.
- *R/W/C_P*: Writable after value cleared by power failure and HW/rest assertion (the value not cleared by CMD0 reset) and readable.
- *R/W/E_P*: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable.
- W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and not readable.

For details, refer to section 8.3 of the JEDEC Standard Specification No. JESD84-B45.

Table 29: CSD fields

Name	Field	Width	Cell	CSD slice	CSD value	Remark
CSD structure	CSD_STRUCTURE	2	R	[127:126]	3h	
System specification version	SPEC_VERS	4	R	[125:122]	4h	
Reserved		2	R	[121:120]		
Data read access-time 1	TAAC	8	R	[119:112]	27	
Data read access-time 2in CLK cycles (NSAC*100)	NSAC	8	R	[111:104]	1h	
Max. bus clock frequency	TRAN_SPEED	8	R	[103:96]	32h	
Card command classes	CCC	12	R	[95:84]	f5h	
Max. read data block length	READ_BL_LEN	4	R	[83:80]	9h	
Partial blocks for read allowed	READ_BL_PARTIAL	1	R	[79:79]	0h	
Write block misalignment	WRITE_BLK_MISALIGN	1	R	[78:78]	0h	
Read block misalignment	READ_BLK_MISALIGN	1	R	[77:77]	0h	
DSR implemented	ed DSR_IMP		R	[76:76]	0h	
Reserved		2	R	[75:74]		
Device size	C_SIZE	12	R	[73:62]	fffh	
Max. read current @ VDD min	VDD_R_CURR_MIN	3	R	[61:59]	7h	
Max. read current @ VDD max	VDD_R_CURR_MAX	3	R	[58:56]	7h	
Max. write current @ VDD min	VDD_W_CURR_MIN	3	R	[55:53]	7h	
Max. write current @ VDD max	VDD_W_CURR_MAX	3	R	[52:50]	7h	
Device size multiplier	C_SIZE_MULT	3	R	[49:47]	7h	
Erase group size	ERASE_GRP_SIZE	5	R	[46:42]	1fh	
Erase group size multiplier	ERASE_GRP_MULT	5	R	[41:37]	1fh	
Write protect group size	WP_GRP_SIZE	5	R	[36:32]	fh	
Write protect group enable	WP_GRP_ENABLE	1	R	[31:31]	1h	
Manufacturer default ECC	DEFAULT_ECC	2	R	[30:29]	0h	
Write speed factor	R2W_FACTOR	3	R	[28:26]	2	

Name	Field	Width	Cell type	CSD slice	CSD value	Remark
Max. write data block length	WRITE_BL_LEN	4	R	[25:22]	9h	
Partial blocks for write allowed	WRITE_BL_PARTIAL	1	R	[21:21]	0h	
Reserved		4	R	[20:17]		
Content protection application	nt protection application CONTENT_PROT_APP		R	[16:16]	0h	
File format group	format group FILE_FORMAT_GRP		R/W	[15:15]	0h	
Copy flag (OTP)	СОРҮ		R/W	[14:14]	1h	
Permanent write protection	PERM_WRITE_PROTECT	1	R/W	[13:13]	0h	
Temporary write protection	TMP_WRITE_PROTECT	1	R/W/E	[12:12]	0h	
File format	FILE_FORMAT	2	R/W	[11:10]	0h	
ECC code	ECC		R/W/E	[9:8]	0h	
CRC	CRC	7	R/W/E	[7:1]	69h	
Reserved		1		[0:0]		

Table 29: CSD fields (continued)

The following sections describe the CSD fields and the relevant data types. If not explicitly defined otherwise, all bit strings are interpreted as binary coded numbers starting with the left bit first.

7.4 Extended CSD Register

The Extended CSD register defines e-NAND properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines e-NAND capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration e-NAND is working in. These modes can be changed by the host by means of the SWITCH command. For details, refer to section 8.4 of the JEDEC Standard Specification No. JESD84-B45.

Name	Field	CSD slice	Cell Type	EXT_CSD Value	Remark
Properties segment					
Reserved		[511:506]			
Extended Security Commands Error	EXT_SECURITY_ERR	[505]		TBD	
Supported command sets	S_CMD_SET	[504]	R	1h	Allocated by MMCA
HPI features	HPI_FEATURES	[503]	R	3h	Bit[1]=1: HPI mechanism implementation based on CMD12 Bit[1]=0: HPI mechanism implementation based on CMD13 Bit[0]=1: HPI mechanism support Bit[0]=0: HPI mechanism not supported (default)
Background operation support	BKOPS_SUPPORT	[502]	R	1h	Background operation are supported
Max packed read commands	MAX_PACKED_READS	[501]	R	8h	
Max packed write commands	MAX_PACKED_WRITES	[500]	R	8h	
Data Tag Support	DATA_TAG_SUPPORT	[499]	R	1h	
Tag Unit Size	TAG_UNIT_SIZE	[498]	R	0h	
Tag Resources Size	TAG_RES_SIZE	[497]	R	6h	
Context management capabilities	CONTEXT_CAPABILITIES	[496]	R	78h	
Large Unit size	LARGE_UNIT_SIZE_M1	[495]	R	1h	
Extended partitions attribute support	EXT_SUPPORT	[494]	R	3h	
Reserved		[493:253]			
Cache size	CACHE_SIZE	[252:249]	R	200h	
Generic CMD6 timeout	CENERIC_CMD6_TIME	[248]	R	64h	
Power off notification(long)timeout	POWER_OFF_LONG_TIME	[247]	R	64h	
Background operations status	BKOPS_STATUS	[246]	R	0h	Outstanding: No operations required
Number of correctly programmed sectors	CORRECTLY_PRG_ SECTORS_NUM	[245:242]	R	0h	Number of correctly programmed sectors = [245]*224+[244]*216+[243]*28+[242]
1st initialization time after partitioning	INI_TIMEOUT_AP	[241]	R	0ah	100ms*10=1000ms
Reserved		[240]			
Power class for 52MHz, DDR at 3.6V	PWR_CL_DDR_ 52_360	[239]	R	0h	MAX RMS Current=100mA, MAX Peak Current=200mA
Power class for 52MHz, DDR at 1.95V	PWR_CL_DDR_ 52_195	[238]	R	0h	MAX RMS Current=65mA, MAX Peak Current=130mA
Power class for 200MHz at 1.95V	PWR_CL_200_195	[237]	R	0h	
Power class for 200MHz at 1.3V	PWR_CL_200_130	[236]	R	0h	
Minimum write performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_W_8_5 2	[235]	R	0h	For cards not reaching the 4.8MB/s value
Minimum read performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_ R_8_52	[234]	R	0h	For cards not reaching the 4.8MB/s value
Reserved		[233]			

Table 30. Extended CSD

Name	Field	CSD slice	Cell Type	EXT_CSD Value	Remark
TRIM multiplier	TRIM_MULT	[232]	R	16GB : 1h 32GB : 2h 64GB : 2h	TRIM Timeout = 300ms*1=300ms (16GB) TRIM Timeout = 300ms*2=600ms(32GB/64GB)
Secure feature support	SEC_FEATURE_ SUPPORT	[231]	R	55h	Bit[4]=1: Card supports the secure and insecure trim operations Bit[2]=1: Card supports the automatic secure purge operation on retired defective portions of the array Bit[0]=1: Secure purge operations are supported Bit[0,2,4]=0: Not support each feature Bit[1,3,5,6,7]=Reserved
Secure erase multiplier	SEC_ERASE_MULT	[230]	R	0ah	Secure Erase Timeout=300ms*2*10=6000ms
Secure TRIM multiplier	SEC_TRIM_MULT	[229]	R	0ah	Secure Erase Timeout=300ms*2*10=6000ms
Boot information	BOOT_INFO	[228]	R	7h	Bit[2]=1 : Device supports high speed timing duing boot Bit[1]=1 : Device supports dual data rate duing boot Bit[0]=1 : Device supports alternate boot method Bit[0,1,2]=0 : Not supports each feature Bit[7:3]=Reserved
Reserved		[227]			
Boot partition size	BOOT_SIZE_ MULTI	[226]	R	20h	Boot partition size = 4096 KB
Access size	ACC_SIZE	[225]	R	6h	
High-capacity erase unit size	HC_ERASE_GRP_SI ZE	[224]	R	1h	Erase Unit Size = 512KB*1=512KB
High_capacity erase timeout	ERASE_TIMEOUT_ MULT	[223]	R	2h	Erase Timeout=300ms*2=600ms
Reliable write sector count	REL_WR_SEC_C	[222]	R	1h	1 sector supported for reliable write feature
High-capacity write protect group size	HC_WP_GRP_ SIZE	[221]	R	16GB:10h 32GB:10h 64GB:20h	8 high-capacity erase unit size
Sleep current(VCC)	S_C_VCC	[220]	R	7h	Sleep Curent @ Vcc = 1uA*2^7=128uA
Sleep current(VCCQ)	S_C_VCCQ	[219]	R	7h	Sleep Curent @ Vccq = 1uA*2^7=128uA
Reserved		[218]			
Sleep/awake timeout	S_A_TIMEOUT	[217]	R	13h	Sleep/Awake Timeout=100ns*2^19=52428800ns
Reserved		[216]			
Sector count	SEC_COUNT	[215:212]	R	16GB:1D5C000h 32GB:3A40000h 64GB:7480000h	
Reserved		[211]			
Minimum write performance for 8bit at52MHz	MIN_PERF_W_8_52	[210]	R	8h	Class A: 2.4MB/s and is the next allowed value (16*150KB/s)
Minimum read performance for 8bit at 52MHz	MIN_PERF_R_8_52	[209]	R	8h	Class A: 2.4MB/s and is the next allowed value (16*150KB/s)
Minimum write performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_W_8_26 _4_52	[208]	R	8h	Class A: 2.4MB/s and is the next allowed value (16*150KB/s)
Minimum read performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_R_8_26 _4_52	[207]	R	8h	Class A: 2.4MB/s and is the next allowed value (16*150KB/s)
Minimum write performance for 4bit at 26MHz	MIN_PERF_W_4_26	[206]	R	8h	Class A: 2.4MB/s and is the next allowed value (16*150KB/s)

Name	Field	CSD Slice	Cell Type	EXT_CSD Value	Remark	
Reserved		[182]				
Erased memory content	ERASED_MEM_CONT	[181]	R	0h	Erased memory range shall be '0'	
Reserved		[180]				
Partition configuration	PARTITION_CONFIG	[179]	R/W/E & R/WE_P	0h	See EXT_CSD in spec	
Boot config protection	BOOT_CONFIG_PROT	[178]	R/W & R/W/C_P	0h	See EXT_CSD in spec	
Boot bus width	BOOT_BUS_WIDTH	[177]	R/W/E	0h	See EXT_CSD in spec	
Reserved		[176]	TBD			
High-density erase group definition	ERASE_GROUP_DEF	[175]	R/W/E_P	0h	Use old erase group size and write protect group size definition (default)	
Reserved		[174]	TBD			
Boot area write protection register	BOOT_WP	[173]	R/W & R/W/C_P	Oh	Bit[6]=0 : Master is permitted to set B_PWR_WP_EN (bit0) Bit[4]=0 : Master is permitted to set B_PERM_WP_EN (bit2) Bit[2]=0 : Boot Region is not permanently write protected Bit[0]=0 : Boot Region is not power-on write protected	
Reserved		[172]	TBD			
User area write protection register	USER_WP	[171]	R/W,R/W/C_P & R/W/E_P	0h	See EXT_CSD in spec	
Reserved		[170]	TBD			
FW configuration	FW_CONFIG	[169]	R/W	0h	FW updates enabled	
RPMB Size	RPMB_SIZE_MULT	[168]	R	20h	RPMB Partition Size= 4096 KB	
Write reliability setting register	WR_REL_SET	[167]	R/W	1fh	Write Data Reliability Partition FALSE	
Write reliability parameter register	WR_REL_PARAM	[166]	R	5h	Bit[2]=1 : The device supports the enhanced definition of reliable write Bit[2]=0 : The device supports the previous definition of reliable write Bit[0]=1 : All the WR_DATA_REL parameters in the WR_REL_SET registers are R/W Bit[0]=0 : All the WR_DATA_REL parameters in the WR_REL_SET registers are read only bits	
Sanitize start	SANITIZE_START	[165]	W/E_P	0h	-	
Manually start background operations	BKOPS_START	[164]	W/E_P	0h	Writing any value to this field shall manually start BKOPs.	
Enable background operations handshake	BKOPS_EN	[163]	R/W	0h	Host does not support BKOPs handling and is not expected to write to BKOPS_START field	
H/W reset function	RST_n_FUNCTION	[162]	R/W	0h	RST_n signal is temporarily disabled (default)	
HPI management	HPI_MGMT	[161]	R/W/E_P	0h	HPI mechanism not activated by the host (default)	
Partitioning support	PARTITIONING_ SUPPORT	[160]	R	7h	Bit[1]=1 : Device can have enhanced technological features in partitions and user data area Bit[1]=0 : Device can not have enhanced technological features in partitions and user data area Bit[0]=1 : Device supports partitioning features Bit[0]=0 : Device does not support partitioning features	
Max enhanced area size	MAX_ENH_SIZE_ MULT	[159:1 57]	R	16GB:3abh 32GB:748h 64GB:748h		

Name	Field	CSD Slice	Cell Type	EXT_CSD Value	Remark
Partitions attribute	PARTITIONS_ ATTRIBUTE	[156]	R/W	Oh	Bit[7:5] : Reserved Bit[4]=1 : Set Enhanced attribute in General Purpose partition 4 Bit[4]=1 : Set Enhanced attribute in General Purpose partition 4 Bit[3]=1 : Set Enhanced attribute in General Purpose partition 3 Bit[2]=1 : Set Enhanced attribute in General Purpose partition 2 Bit[1]=1 : Set Enhanced attribute in General Purpose partition 1
Paritioning setting	PARTITION_SETTIN G_COMPLETED	[155]	R/W	0h	NOT PARTITION_SETTING_COMPLETED
General purpose partition size	GP_SIZE_MULT	[154:143]	R/W	0h	See EXT_CSD in spec
Enhanced user data area size	ENH_SIZE_MULT	[142:140]	R/W	0h	See EXT_CSD in spec
Enhanced user data start address	ENH_START_ADDR	[139:136]	R/W	0h	See EXT_CSD in spec & See EXT_CSD.txt
Reserved		[135]			
Bad Block management mode	SEC_BAD_BLK_ MGMNT	[134]	R/W	0h	(Default) Feature Disabled
Reserved		[133]			
Package Case Temperature is controlled	TCASE_SUPPORT	[132]	W/E_P	0h	
Periodic Wake-up	PERIODIC_WAKEUP	[131]	R/W/E	0h	
Program CID/CSD in DDR mode support	PROGRAM_CID_CSD_D DR_SUPPORT	[130]	R	0h	
Reserved		[129:128]	TBD	TBD	
Vendor Specific Fields	VENDOR_SPECIFIC_FIE LD	[127:64]	Vendor Specific	1h	
Native sector size	NATIVE_SECTOR_SIZE	[63]	R	1h	
Sector size emulation	USE_NATIVE_SECTOR	[62]	R/W	0h	
Sector size	DATA_SECTOR_SIZE	[61]	R	0h	
1st initialization after disabling sector size emulation	INI_TIMEOUT_EMU	[60]	R	0a	
Class 6 commands control	Class6_CTRL	[59]	R/W/E_P	0h	
Number of addressed group to be Released	DYNCAP_NEEDED	[58]	R	0h	
Exception events control	EXCEPTION_EVENTS_C TRL	[57:56]	R/W/E_P	0h	
Exception events status	EXCEPTION_EVENTS_S TATUS	[55:54]	R	0h	
Extended Partitions Attribute	EXT_PARTITIONS_ATTR IBUTE	[53:52]	R/W	0h	
Context configuration	CONTEXT_CONF	[51:37]	R/W/E_P	0h	
Packed command status	PACKED_COMMAND_ST ATUS	[36]	R	0h	
Packed command failure index	PACKED_FAILURE_INDE X	[35]	R	0h	
Power Off Notification	POWER_OFF_NOTIFICA TION	[34]	R/W/E_P	0h	
Control to turn the Cache ON/OFF	CACHE_CTRL	[33]	R/W/E_P	0h	
Flushing of the cache	FLUSH_CACHE	[32]	W/E_P	0h	
Reserved		[31:0]	TBD		

7.5 RCA (Relative Card Address)

The writable 16-bit relative card address (RCA) register carries the card address assigned by the host during the card identification. This address is used for the addressed host-card communication after the card identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all cards into the Stand-by State with CMD7.

7.6 DSR (Driver Stage Register)

The 16-bit driver stage register (DSR) is described in detail in Section 10.2. It can be optionally used to improve the bus performance for extended operating conditions (depending on parameters like bus length, transfer rate or number of Devices). The CSD register carries the information about the DSR register usage. The default value of the DSR register is 0x404.

8. Connection Guide

Figure 16: Connection Guide Drawing

Table 31: Connection Guide Specification

Parameter	Symbol	Min	Max	Recommend	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7	100	10	kohm	Pull-up resistance should be put on CMD line to prevent bus floating.
Pull-up resistance for DAT0~7	R _{DAT}	10	100	50	kohm	Pull-up resistance should be put on DAT line to prevent bus floating.
Pull-up resistance for RST_n	R _{RSTn}	10	100	50	kohm	It is not necessary to put pull-up resistance on RSTn line if host does not use H/W reset. (Extended CSD register [162] = 0b)
Serial resistance on CLKm	R_CLK	0	30	27	ohm	To reduce overshooting/undershooting and ringing.
V _{CCQ} Capacitor value	C1 & C2	2+0.22	4.7	2±0.22	uF	Coupling cap should be connected with VCCQ and VssQm as closely possible.
V _{CC} Capacitor value(≤8GB)						Coupling cap should be connected with Vcc and Vssm as closely possible.
V _{CC} Capacitor value(>8GB)	C3 & C4	1	10	2.2±0.22	uF	Vcc / Vccq cap. value would be up to Host requirment and the application system characteristics.
VDDi capacitor value	C5 & C6	0	2.2	0.1	uF	Coupling cap should be connected with VDDi and Vssm as closely possible.

9. Temperature

Table 32: Temperature Range

	Range
Operation Temperature	-25℃ ~ +85℃
Storage Temperature	-40℃ ~ +85℃